

FlowViewer

FlowViewer
FlowGrapher
FlowTracker

Version 3.3

User’s Guide

1. Introduction

FlowViewer is an open source set of tools that provide a convenient web-based user
interface to Mark Fullmer’s flow-tools suite. The tools provide additional graphing and
tracking features by utilizing open source software including Lincoln Stein's GD, Martien
Verbruggen's GD::Graph, and Tobias Oetiker’s RRDtool packages.

The umbrella FlowViewer package consists of FlowViewer, FlowGrapher, and
FlowTracker. Each of these tools uses a web interface to collect filtering information and
applies the filter to netflow data captured and stored by flow-tools, resident on the same
host. The processing of each of the tools is configured via a common configuration file.
Guidance for using each of these tools is presented in separate sections below.

2. Installation

Quick Instructions for an Upgrade

 1. Untar the package into new cgi-bin subdirectory
 2. Configure FlowViewer_Configuration.pm variables as necessary
 3. Replace old logos with new logos (might be done automatically)
 4. Configure FlowViewer_Configuration.pm to point to existing
 FlowTracker_Filter and FlowTracker_RRDtool directories
 5. Stop old Flowtracker_Collector and FlowTracker_Grapher
 6. Start new Flowtracker_Collector and FlowTracker_Grapher
 7. Modify NamedInterfaces_Devices file if using them
 8. Use included 'User Relay' scripts if desired (see below)

Quick Instructions for Installation:

 1. Untar into cgi-bin subdirectory

 For FlowViewer

 2. Configure FlowViewer_Configuration.pm variables as necessary
 3. Point browser to FlowViewer.cgi

 For FlowGrapher

 4. Install GD, GD::Graph
 5. Configure FlowViewer_Configuration.pm variables as necessary
 6. Point browser to FlowGrapher.cgi

 For FlowTracker

 7. Install RRDtool
 8. Create FlowTracker_Filter and FlowTracker_RRDtool directories
 9. Configure FlowViewer_Configuration.pm variables as necessary
 10. Start FlowTracker_Collector, FlowTracker_Grapher in background

 11. Point browser to FlowTracker.cgi

More detailed information:

1. Getting and untarring the package:

Obtain the latest version of FlowViewer from the FlowViewer website:

http://ensight.eos.nasa.gov/FlowViewer/

A good way to get a copy is to use the ‘wget’ program. For example:

/htp/cgi-bin >wget http://ensight.eos.nasa.gov/FlowViewer/FlowViewer_3.3.tar

From your system’s cgi-bin directory:

/htp/cgi-bin/ 103 >tar -xvf FlowViewer_3.3.tar
FlowViewer_3.3/
FlowViewer_3.3/FlowViewer_Configuration.pm
FlowViewer_3.3/flowcap
FlowViewer_3.3/FlowGrapher.cgi
FlowViewer_3.3/FlowGrapher_Colors
FlowViewer_3.3/FlowGrapher_Main.cgi
FlowViewer_3.3/FlowGrapher.png
FlowViewer_3.3/FlowGrapher_Relay.cgi
FlowViewer_3.3/FlowGrapher_Save.png
FlowViewer_3.3/FlowGrapher_Sort.cgi
FlowViewer_3.3/FlowTracker.cgi
FlowViewer_3.3/FlowTracker_Collector
FlowViewer_3.3/FlowTracker_Dumper.cgi
FlowViewer_3.3/FlowTracker_Grapher
FlowViewer_3.3/FlowTracker_Group.cgi
FlowViewer_3.3/FlowTracker_Main.cgi
FlowViewer_3.3/FlowTracker.png
FlowViewer_3.3/FlowTracker_Relay.cgi
FlowViewer_3.3/FlowViewer.cgi
FlowViewer_3.3/FlowViewer_CleanASCache
FlowViewer_3.3/FlowViewer_CleanFiles
FlowViewer_3.3/FlowViewer_CleanHostCache
FlowViewer_3.3/FlowViewer_Main.cgi
FlowViewer_3.3/FlowViewer.png
FlowViewer_3.3/FlowViewer_Relay.cgi
FlowViewer_3.3/FlowViewer_Save.cgi
FlowViewer_3.3/FlowViewer_Save.png
FlowViewer_3.3/FlowViewer_Utilities.pm
FlowViewer_3.3/Generic_Logo.jpg
FlowViewer_3.3/NamedInterfaces_Devices
FlowViewer_3.3/NamedInterfaces_Exporters
FlowViewer_3.3/README

This has created a cgi-bin subdirectory called FlowViewer_3.3 which includes the
whole package. It may be the case that you have created this directory as a user that
is not the same as the owner of the web server process. The web server may,
depending on your configuration (more later) need to write into this directory. If that is
the case, you must give this directory adequate ‘write’ permissions. I generally
provide it with ‘0777’ (e.g., chmod 0777 /htp/cgi-bin/FlowViewer_3.3) since my web
server process owner is ‘apache.’

If you plan to use FlowTracker, you’ll need to create directories to hold the
permanent filter files and rrdtool databases that will be created. These are defined by
the $filter_directory and $rrdtool_directory parameters. If you’ve been using an
earlier version of FlowViewer, and you’ve been using the FlowTracker tool, you’ll
want to either set the $filter_directory and $rrdtool_directory parameters to the
existing directories, or create new directories and move any existing FlowTracker
filters and rrdtool databases to there.

2. Latest Release Information

Version 3.3 Release Notes

New Capabilities

1. Some devices will now have 'named interfaces' (thanks C. Kishimoto)

2. The user can now save filters of interest and recall them later

3. Data can now be analyzed by Exporter ID (in addition to device name)

4. Users can now set thresholds on FlowTrackings, and be alerted

5. FlowViewer now provides Pie Charts

6. Capability added to apply a Sampling Multiplier to output

7. FlowTrackings now have a '3 year' graph

8. The user can now generate text listings of FlowTracker output

9. Filtering on next-hop has been added

10. Logging has been made more flexible (e.g., less data)

11. Preserve latest three notations (was keeping first three)

12. Can now specify and display time-zones

13. A hook has been provided for a User Logo with link out of FlowViewer

14. New file cleanup scripts have been added

15. Unit Conversion capability has been added (thanks C. Kishimoto)

16. Can now graph Flows, Packets as well as Octets (thanks E. Lautenschlaeger)

17. Improved AS name resolution (thanks S. Cardus)

New Scripts and Files:

FlowGrapher_Sort.cgi Sorts FlowGrapher Detail Lines by column

FlowTracker_Dumper.cgi Invoked by link in Trackings, prints text values

FlowViewer_Save.png New logo with links for saving filters, reports

Flowgrapher_Save.png New logo with links for saving filters, reports

FlowViewer_CleanASCache Tool used to remove obsolete AS name resolutions

FlowViewer_CleanFiles Tool used to remove old intermediate files

FlowViewer_CleanHostCache Tool used to remove obsolete host name resolutions

FlowViewer_Relay.cgi Optional for pointing users to new version (see Notes)

FlowGrapher_Relay.cgi Optional for pointing users to new version (see Notes)

FlowTracker_Relay.cgi Optional for pointing users to new version (see Notes)

flowcap Optional start-up script for flow-tools and FlowTracker

NamedInterfaces_Devices Holds interface names for SNMP indexes for devices

NamedInterfaces_Exporters Holds interface names for SNMP indexes for exporters

FlowViewer_SavedFilters Created during processing to hold saved filters

Notes:

Many thanks to Carles Kishimoto, Eric Lautenschlaeger, and Sean Cardus for

their ideas and code contributions. Thanks to Dario La Guardia for pointing out

a graphing problem that turned out to be a rounding error in FlowGrapher. Credit

to Peter Hoffswell for the idea of linking the tools.

There are no new software dependencies with FlowViewer version 3.3, however

Named Interfaces now requires Javascript in the browser to operate.

Using the 'Relay' scripts (these are optional)

If you have other users and you would like to point them to the new version,

copy the included 'Relay' scripts over the old FlowViewer.cgi, FlowGrapher.cgi,

and FlowTracker.cgi scripts in the last version's directory.

For example:

In the directory /htp/cgi-bin/FlowViewer_3.2:

mv FlowViewer_Relay.cgi FlowViewer.cgi

mv FlowGrapher_Relay.cgi FlowGrapher.cgi

mv FlowTracker_Relay.cgi FlowTracker.cgi

Then, when the user goes to the old FlowViewer, he will be provided a link to

the new FlowViewer, and asked to change his bookmarks.

Setting up crontab file for cleaning FlowViewer file:

min hr dom moy dow command

5 0 * * * /htp/cgi-bin/FlowViewer_3.3/FlowViewer_CleanFiles

> /htp/cgi-bin/FlowViewer_3.3/cleanup.log

2 >> /htp/cgi-bin/FlowViewer_3.3/cleanup.log

The file cleanup is controlled by parameters in FlowViewer_Configuration.pm:

$remove_workfiles_time = 86400;

$remove_graphfiles_time = 7*86400;

$remove_reportfiles_time = 7*86400;

3. Dependencies

FlowViewer requires that you have flow-tools, flow data files, a web-server, Perl, and
the FlowViewer package all installed on the same machine.

You will, of course, need flow-tools. Written by Mark Fullmer, flow-tools versions up
to 0.68 are available at:

http://www.splintered.net/sw/flow-tools/

Paul Komkoff Jr., et. al. are keeping a newer ‘fork’ of flow-tools at:

http://code.google.com/p/flow-tools/

If you are planning on using FlowGrapher, you will need to install Lincoln Stein's GD,
and Martien Verbruggen's GD::Graph packages. They can be found at:

GD package: http://search.cpan.org/~lds/GD-2.30/
GD::Graph package: http://search.cpan.org/~mverb/GDGraph-1.43/

If you are planning on using FlowTracker, you will need to install Toby Oetiker’s
RRDtool package. This package can be found at:

http://people.ee.ethz.ch/~oetiker/webtools/rrdtool/pub/rrdtool-1.2.13.tar.gz

For each of these you should make sure you have the latest stable versions.

4. Contents of the FlowViewer Distribution

FlowViewer_Configuration.pm

This file contains parameters that configure and control the FlowViewer, FlowGrapher,
and FlowTracker environments. This package should remain in the same directory that
the CGI scripts are in.

FlowViewer_Utilities.pm

This file contains processing used by multiple programs (e.g., to create the Report
Parameters output for each tool, and other utilities (e.g., 'epoch_to_date' which converts
between typical date formats and 'seconds since 1972') that are invoked by other scripts.
This package should be placed in the same directory as the CGI scripts.

FlowViewer.cgi

This script produces the web page which provides the user the form for entering analysis
selection criteria for FlowViewer. Version 3.1 re-organized the processing.
FlowViewer.cgi is now the old create_FlowViewer_webpage. This change permits the
input date and time to be updated with each invocation.

FlowViewer_Main.cgi

This script responds when the user completes the selection criteria form and submits the
'Generate Report' command. The script creates a flow-tools filter file based on the
selection criteria. Based on the input time period, the script concatenates the relevant
flow-tools data files for the selected device. The location of the flow-tools raw data files is
specified via the 'flow_data_directory' parameter. The script then invokes the selected
statistics/print report flow-tools program and reformats the output into HTML. An option
is available in FlowViewer_Configuration to have this script use the NDBM capability (for
caching resolved host names) instead of the default GDBM capability for users whose
Perl distribution does not have GDBM.

FlowViewer.png

The FlowViewer logo. Leave this file in the 'cgi-bin_directory', the FlowViewer.cgi script
will place a copy of the image in 'reports_directory'. This logo now has embedded links in
it that permit you to easily switch between FlowViewer tools. If you have generated a
report or graph and click on an embedded link, it will bring up the requested tool with the
existing filter criteria pre-filled.

FlowViewer_Save.png

The FlowViewer_Save logo with links. Leave this file in the 'cgi-bin_directory', the
FlowViewer.cgi script will place a copy of the image in 'reports_directory'. This image
contains mapped links to the other tools as well as links for saving the filter used or the
report generated.

FlowGrapher.cgi

This script produces the web page which provides the user the form for entering analysis
selection criteria for FlowGrapher. Version 3.1 reorganized the processing
FlowGrapher.cgi is now the old create_FlowGrapher. This change permits the input date
and time to be updated with each invocation.

FlowGrapher_Main.cgi

This script responds when the user completes the FlowGrapher selection criteria form
and submits the 'Generate Graph' command. The script creates intermediate processing
files exactly like FlowViewer above. The script then parses intermediate output, fills time
buckets, and generates a graphic image. Textual output accompanies the graph. An
option is available in FlowViewer_Configuration to have this script use the NDBM
capability (for caching resolved host names) instead of the default GDBM capability for
users whose Perl distribution does not have GDBM.

FlowGrapher_Sort.cgi

This script is invoked when the user clicks on a column header for the Detail Lines of a
FlowGrapher report. The textual data on the page is sorted and re-presented.

FlowGrapher.png

The FlowGrapher logo. Leave this file in the 'cgi-bin_directory', the FlowGrapher.cgi
script will place a copy of the image in 'graphs_directory'. This logo now has embedded
links in it that permit you to easily switch between FlowViewer tools. If you have
generated a report or graph and click on an embedded link, it will bring up the requested
tool with the existing filter criteria pre-filled.

FlowGrapher_Save.png

The FlowGrapher_Save logo with links. Leave this file in the 'cgi-bin_directory', the
FlowGrapher.cgi script will place a copy of the image in 'reports_directory'. This image
contains mapped links to the other tools as well as links for saving the filter used or the
report generated.

FlowGrapher_Colors

This file contains a translation between textual color names and their RGB value
counterparts. This file controls colors for both FlowGrapher, and FlowTracker_Grapher.
The colors that start with ‘auto’ will enable you to create Groups more easily by
automatically selecting the next color from a pre-defined family of colors. The user may
add as many colors as desired. If you add colors, you must restart the
FlowTracker_Grapher script.

FlowTracker.cgi

This script produces the web page which provides the user the form for entering analysis
selection criteria for FlowTracker. The script also provides the user with the ability to
review, revise, or remove existing trackings. FlowTracker.cgi was revised for version 3.1.

FlowTracker_Main.cgi

This script responds when the user completes the FlowTracker selection criteria form
and submits the 'Establish Tracking' command. The script responds to the users desire
to create, remove, or revise a tracking.

FlowTracker_Group.cgi

This script is invoked by FlowTracker_Main.cgi whenever a user wishes to define a
tracking group. When this is the case (i.e., user has selected the ‘Group’ pulldown) any
filter criteria entered is ignored since it is not required for a group. A group simply points
to existing trackings for which filter criteria has already been defined.

FlowTracker_Collector

The script is started once by the user and placed in the 'background'. The script will
execute and then sleep for the duration of a five minute period, essentially running every
five minutes. For each existing tracking, the script applies the associated filter to the flow
data and extracts the amount that occurred during a 5-minute window approximately 30
minutes earlier. This is to permit long-running flows to have been exported and available
to the collector. The script then divides the total bits by 300 seconds to get an average
bits-per-second rate during the period. The data point is then provided to RRDtool for
storage.

FlowTracker_Grapher

The script is started once by the user and placed in the 'background'. The script will
execute and then sleep for the duration of a five minute period, essentially running every
five minutes. The script runs the RRDtool graph function for each existing tracking. Daily,
weekly, monthly, and yearly graphs are updated with the latest information. The script
creates an html page for each tracking that includes the filter parameters and the four
graphs. The script also creates an overall web page ($tracker_webpage) that provides
links to all active tracking pages.

FlowTracker_Dumper.cgi

This script is invoked when the user clicks on a link within the FlowTracking graph
labeled '[List values]'. The script dumps the RRDtool contents onto a web page.

FlowTracker.png

The FlowTracker logo. Leave this file in the 'cgi-bin_directory', the FlowTracker.cgi script
will place a copy of the image in 'tracker_directory'. This logo now has embedded links in
it that permit you to easily switch between FlowViewer tools. If you have generated a

report or graph and click on an embedded link, it will bring up the requested tool with the
existing filter criteria pre-filled.

FlowViewer_Save.cgi

This script moves temporary save files into a permanent residence as defined by either
the 'reports_directory' or 'graphs_directory' environment variables.

FlowViewer_CleanFiles

A utility for cleaning out temporary files that have been left over from debugging (e.g.
$debug_files = 'Y'). Files older than the following configurable parameters are removed:

 $remove_workfiles_time = 86400;
 $remove_graphfiles_time = 7*86400;
 $remove_reportfiles_time = 7*86400

 See above for crontab settings for running this automatically.

FlowViewer_CleanASCache

A utility for cleaning out from the AS resolving cache ($as_file) a resolved AS name that
is no longer valid.

FlowViewer_CleanHostCache

A utility for cleaning out from the DNS resolving cache ($names_file) a resolved host
name that is no longer valid.

FlowViewer_Relay.cgi, FlowGrapher_Relay.cgi, FlowTracker_Relay.cgi

Short scripts that refer users from version 3.2 to version 3.3. This keeps you from having
to notify users to go to a different web site.

flowcap

A generic shell script used for starting up flow-captures and FlowTracker_Collector, and
FlowTracker_Grapher. The user must configure this file.

Generic_Logo.jpg

This image is to be replaced by your own image that can point back to anywhere (e.g.,
your overarching NMS system.)

5. Configuring for your environment

The file FlowViewer_Configuration.pm is used to configure each of FlowViewer,
FlowGrapher, and FlowTracker. Most of the parameters in the file do not need to be
changed. Those that might require change are discussed below:

Parameter Description Example

$ENV{PATH} Set this variable to include directories to your
basic system commands (e.g., rm, mv, etc.)

$ENV{PATH} =
':/usr/local/bin:/usr/sbin';

$FlowViewer_server This variable should be set to the IP address of
the machine that is running your flow-tools, web-
server, and the FlowViewer software.

$FlowViewer_server = “192.168.0.1";

$FlowViewer_service Set this parameter according the service which
your web-server is running. The options are ‘http’
or the encrypted ‘https.’

$FlowViewer_service = "https";

$reports_directory This is the directory into which you will put
FlowViewer reports that you wish to save using
the ‘save’ option from the report. The directory
should be somewhere beneath your …/htdocs
directory.

IMPORTANT: Must have adequate ‘write’
permissions so that the web-server can write into
this directory as necessary.

$reports_directory =
"/htp/htdocs/FlowViewer";

$reports_short This parameter is used within scripts that are
being run by the web-server to locate directories
off of the web-server default short-cuts. Typically,
the web-server omits the directory information
pointing to the root of the ‘htdocs’ and ‘cgi-bin’
directories. See this in comparison to the
parameter above.

$reports_short = "/FlowViewer";

$graphs_directory This is the directory into which you will put
FlowGrapher output that you wish to save using
the ‘save’ option from the report. The directory
should be somewhere beneath your …/htdocs
directory.

IMPORTANT: Must have adequate ‘write’
permissions so that the web-server can write into
this directory as necessary.

$graphs_directory =
"/htp/htdocs/FlowGrapher";

$graphs_short This parameter is used within scripts that are
being run by the web-server to locate directories
off of the web-server default short-cuts. Typically,
the web-server omits the directory information
pointing to the root of the ‘htdocs’ and ‘cgi-bin’
directories. See this in comparison to the
parameter above.

$graphs_short = "/FlowGrapher";

$tracker_directory This is the directory which will be used to store
your Tracking files and graphs. Each tracking will
be structured as a subdirectory of this directory,
where the subdirectory contains an html page and
four RRDtool graphs.

IMPORTANT: Must have adequate ‘write’
permissions so that the web-server can write into
this directory as necessary. The directory should
be somewhere beneath your …/htdocs directory.

$tracker_directory =
"/htp/htdocs/FlowTracker";

$tracker_short This parameter is used within scripts that are
being run by the web-server to locate directories
off of the web-server default short-cuts. Typically,
the web-server omits the directory information
pointing to the root of the ‘htdocs’ and ‘cgi-bin’
directories. See this in comparison to the
parameter above.

$tracker_short = "/FlowTracker";

$cgi_bin_directory This is the directory into which you have placed
the FlowViewer scripts. It should somewhere
beneath you system’s main cgi-bin directory.

IMPORTANT: Must have adequate ‘write’
permissions so that the web-server can write into
this directory as necessary.

$cgi_bin_directory =
"/htp/cgi-bin/FlowViewer_3.3";

$cgi_bin_short This parameter is used within scripts that are
being run by the web-server to locate directories
off of the web-server default short-cuts. Typically,
the web-server omits the directory information
pointing to the root of the ‘htdocs’ and ‘cgi-bin’
directories. See this in comparison to the
parameter above.

$cgi_bin_short = "/FlowViewer_3.3";

$work_directory This directory is used to hold intermediate files
generated during processing, including save files
created in case someone wants to save the file.

IMPORTANT: Must have adequate ‘write’
permissions so that the web-server can write into
this directory as necessary. Also, some
intermediate files are quite large, so the size of
the partition that holds this directory should be of
adequate size.

$work_directory = "/tmp”;

$names_directory This directory specifies where you would like to
store the ‘names’ file created in the process of
resolving IP addresses to hosts names. The file is
used to cache names for much quicker retrieval
than using the ‘dig’ function to get them. It is a
good idea to keep this file in a more permanent
place (e.g., not /tmp) since temporary directories
are cleaned out on system reboots, etc..

IMPORTANT: Must have adequate ‘write’
permissions so that the web-server can write into
this directory as necessary.

$names_directory = "/htp/cgi-
bin/FlowViewer_3.3";

$filter_directory This directory is used to store permanent filter
files associated with the long-term trackings
established using FlowTracker.

IMPORTANT: Must have adequate ‘write’
permissions so that the web-server can write into
this directory as necessary.

This directory must be kept around through
FlowViewer version updates if the user wishes to
continue with the existing trackings.

$filter_directory = "/htp/cgi-
bin/FlowViewer_3.3/FlowTracker_Filte
rs";

$rrdtool_directory This directory is used to store permanent RRDtool
files associated with the long-term trackings
established using FlowTracker. IMPORTANT:
Must have adequate ‘write’ permissions so that
the web-server can write into this directory as
necessary.

$rrdtool_directory = "/htp/cgi-
bin/FlowViewer_3.3/FlowTracker_RR
Dtool";

This directory must be kept around through
FlowViewer version updates if the user wishes to
continue with the existing trackings.

$flow_data_directory This is the directory that sits at the top of
subdirectories that store raw flow-tools netflow
data.

Note that if you are using EXPORTER_ID to
distinguish your devices, instead of storing each
device’s netflow data in a separate directory, then
you can ignore this field and use the
$exporter_directory.

$flow_data_directory = "/htp/flows";

$exporter_directory This is the directory that stores all of the netflow
data that you are exporting when you are
capturing data from more than one device onto
the same port.

This is opposed to capturing data from different
devices on different ports (i.e., multiple
instantiations of flow-capture), and then storing
each device’s netflow data into a different
directory, distinguished by device_name.

$exporter = “/htp/flows/all_routers”;

$flow_bin_directory This directory contains all of the flow-tools
programs.

$flow_bin_directory = "/usr/bin";

$rrdtool_bin_directory This directory holds the rrdtool binary. $rrdtool_bin_directory =
"/usr/local/rrdtool-1.2.12/bin";

$actives_webpage This is the name of the file that will hold the
overall list of all trackings providing a single entry
point for users to select a tracking of interest. This
file will be created and placed into the directory
specified by the ‘tracker_directory’ parameter.

$actives_webpage = "index.html";

$trackings_title This parameter defines the title that will appear on
the web page that lists all of the trackings.

$trackings_title = “Your Company
Name”;

$user_logo This defines the name of the image file containing
the user’s logo. This option if used will place the
user’s logo next to the FlowViewer logos on all
pages providing an exit link for the user.

$user_logo = “Generic_Logo.jpg”;

$user_hyperlink Defines the hyperlink to be associated with the
User logo. For example, this could point to the
user’s overarching Network Management System.

$user_hyperlink =
www.yourcompany.com/NMS;

$version Simply the current FlowViewer version number,
used to differentiate between versions.

$version = “3.3”;

@devices This array holds a list of all of the different devices
you are collecting netflow data from.

The FlowViewer can use a flow-tools data
directory layout that has a particular device at the
top. A typical flow-tools directory looks like:

/flows/router_1/2006/2006-07/2006-07-04

The device name (router_1) is obtained from this
array. Populate this array with your device names.
If your flow-data file structure does not include a

@devices =
("router_1","router_2","router_3");

device name, for example you are collecting only
from one device, set the @devices array to empty
(i.e., @devices = ("");) and set:

$no_devices_or_exporters = “Y”;

Note that version 3.3 introduces the “Exporter”
option which allows users to collect all devices on
a single port and separate them via
EXPORTER_ID. If you are taking the “Exporter”
approach exclusively (i.e., you are not also using
devices as described here) you may comment out
this parameter. See next parameter

@exporters If you are collecting from all of your devices onto
a single flow-capture port, you may use
$exporter[n] to separate the data. If so,
uncomment this parameter.

Each entry in this array is formed like this:

exporter_ip_address : exporter_name

On the FlowViewer input screens you will then
see a pulldown with each exporter defined by
exporter name. Internal searches will be based on
the associated IP address.

@exporters = ("192.168.100.1:New
York Router","192.168.100.2:Prague
Router");

$no_devices_or_exporter
s

You need to set this parameter to “Y” if you are
using neither devices nor exporters, you are
simply collecting data (probably from just one
device) into one directory.

If you have devices and/or exporters, this field
should be left at “N”.

$no_devices_or_exporters = “N”;

$flow_capture_interval This variable defines the length of time beyond
your specified end_time up to which the script will
continue to parse through the flow_data looking
for flows that occurred during your specified time
period, but were exported from the router after the
time_period. Some long flows, with a lot of data,
may not complete and be exported from the
router until well after your specified end_time.

$flow_capture_interval = 30 * 60; #
Continue to look for flows 30 minutes
beyond

$flow_file_length This parameter defines how long each of your
flow data files is. This is set via the flow-tools
flow-capture command and defaults to 15
minutes.

$flow_file_length = 15 * 60

$start_offset This parameter specifies how far back before the
current time to specify the start_time for your
FlowViewer or FlowGrapher run. These are the
default start and end times that appear on your
filter input screens.

$start_offset = (90 * 60); # e.g., 90
minutes ago

$end_offset This parameter specifies how far back before the
current time to specify the end_time for your
FlowViewer or FlowGrapher run. The example
below and the one above will specify a one hour
period occurring approximately 30 minutes ago.

$end_offset = (30 * 60); # e.g., 30
minutes ago

$use_even_hours If set to “Y” this parameter will cause the start and
end times of your report period to be set on the
hour.

$use_even_hours = "Y";

$N Different organizations store captured netflow
data differently according to the 'N’ setting on the
flow-capture statement. However, there is a bug
in the flow-tools documentation such that the
default value is truly '3' and not '0' as indicated.
The default has been set to $N = 3 to reflect the
more common setting. The directory structure
associated with $N = 3 is shown below:

/flows/router_1/2006/2006-07/2006-07-04

Setting $N=0, would cause the data to
accumulate into a single directory without any
subdirectories for date organization.

$N = 3;

$use_NDBM FlowViewer offers the ability to resolve netflow IP
addresses into their host names on the fly. This
process is speeded up by caching names into a
'names' file which resides in the directory
specified by the 'names_directory' parameter.

As you are building up your 'names' file with early
runs, you will notice the speed increase
dramatically as the 'names' file is used more. The
process of resolving names is the primary reason
for slower overall FlowViewer performance. You
should preferably use the GDBM array database
which is fastest. However, not all Perl distributions
support GDBM but most do support NDBM.

The '$use_NDBM' flag will cause the
FlowViewer_Main.cgi and FlowGrapher_Main.cgi
scripts to use NDBM.

$use_NDBM = "N";

$pie_chart_default The parameter defines which pie-chart option
appears as the default on the Pie Chart pulldown
on the FlowViewer input screen.

The “With Others” option means that the Pie
Chart will show an “Others” slice which includes
“everything else”.

The “Without Others” option will not show an
“everything else” slice.

$pie_chart_default = 0; # 0 = None;
1 = With Others; 2 = Without Others

$number_slices Defines the number of slices included in the Pie
Chart.

$number_slices = 6;

$maximum_days This parameter defines a maximum number of
days for the length of user created FlowViewer
reports and FlowGrapher graphs.

$maximum_days = 91;

$remove_workfiles_time This parameter defines the age at which to
remove intermediate files from the $flow_working
directory when running the FlowViewer_CleanFile
utility from crontab. (In seconds- the example
shows 1 day.)

$remove_workfiles_time = 86400;

$remove_graphfiles_time This parameter defines the age at which to
remove intermediate files from the
$graphs_directory directory when running the
FlowViewer_CleanFile utility from crontab. (In
seconds- the example shows 7 days.)

$remove_graphfiles_time = 7*86400;

$remove_reportfiles_time This parameter defines the age at which to
remove intermediate files from the $reports

$remove_reportfiles_time = 7*86400;

directory when running the FlowViewer_CleanFile
utility from crontab. (In seconds- the example
shows 7 days.)

$time_zone This parameter controls the display of the time
zone labels for reports, graphs and trackings.
Leaving this blank, will result in all labels showing
the system time zone (i.e., whatever comes back
from ‘timelocal’.)

$time_zone = "EST";

$labels_in_titles This parameter controls whether to display the
Tracking title in the title of the graph itself. Setting
this to “1” will include titles, setting it to “0” will not.

$labels_in_titles = "1";

$debug_viewer This parameter, if set to “Y”, will turn on
debugging for FlowViewer. The debug output can
be found in $flow_working/DEBUG_VIEWER.

$debug_viewer = “Y”;

$debug_grapher This parameter, if set to “Y”, will turn on
debugging for FlowGrapher. The debug output
can be found in
$flow_working/DEBUG_GRAPHER.

$debug_grapher = “Y”;

$debug_tracker This parameter, if set to “Y”, will turn on
debugging for FlowTracker. The debug output can
be found in $flow_working/DEBUG_TRACKER.

$debug_tracker = “Y”;

$debug_group This parameter, if set to “Y”, will turn on
debugging for FlowTracker_Group. The debug
output can be found in
$flow_working/DEBUG_GROUP.

$debug_group = “Y”;

$debug_files This parameter controls whether to save
intermediate files for debugging purposes. A
value of “Y” will leave the files around for
inspection. This defaults to “N”.

$debug_files = “N”;

$log_directory The location for the logging output files. Some of
the logging files, when set to full logging, can get
big. Also, if you want the files around for a while,
don’t place them in a directory that will get
cleaned by one of the FlowViewer_Clean scripts.

$log_directory =
"/htp/cgi-bin/FlowViewer_3.3";

$log_collector_short Provides for a minimal amount of logging for
FlowTracker_Collector. A timer is printed which
tells how long it has taken to collect the data. This
might be useful if you have a lot of Trackings and
you want to see if they are still being completed in
a timely manner.

$log_collector_short= "Y";

$log_collector_med Provides for a medium amount of logging for
FlowTracker_Collector. A timer is printed which
tells how long it has taken to collect the data. This
might be useful if you have a lot of Trackings and
you want to see if they are still being completed in
a timely manner.

$log_collector_med= "N";

$log_collector_long Provides for a full amount of logging for
FlowTracker_Collector. This includes collected
data for each active tracking. A timer is printed
which tells how long it has taken to collect the
data. This might be useful if you have a lot of
Trackings and you want to see if they are still
being completed in a timely manner.

$log_collector_long= "N";

$log_grapher_short Provides for a medium amount of logging for
FlowTracker_Grapher. The logs have timers
showing how long it takes to complete the graphs
(e.g., usually under 1 second per tracking).

$log_grapher_short= "Y";

$log_grapher_long Provides for a full amount of logging for
FlowTracker_Grapher. This includes graph data
for each active tracking. The logs have timers
showing how long it takes to complete the graphs
(e.g., usually under 1 second per tracking).

$log_grapher_long= "N";

$collection_offset Defines how many minutes into the past you want
to use to collect data. At 1800 (30 minutes) this
will cause FlowTracker_Collector to examine a
period 30 minutes in the past. This is useful for
allowing all flows that may have crossed that
period to be exported from the device. Some
flows can last 30 minutes and will be excluded for
consideration if they haven’t been exported yet.

$collection_offset = 1800;

$collection_period This parameter controls how often data is
collected for Trackings by FlowTracker_Collector.
I have not really used anything other than 5
minutes, so other values have not been tested
and YMMV.

$collection_period = 300;

$graphing_period Frequency at which FlowTracker_Grapher is
executed to generate new Tracking graphs.

$graphing_period = 300;

$use_existing_concats When set to “Y” this parameter will cause
FlowTracker_Collector to re-use concatenated
flow-tools files for different trackings that are
based on the same device. This dramatically
speeds things up.

$use_existing_concats = "Y";

$rrd_dir_perms Controls the UNIX permissions applied to
directories of the type defined by the parameter.

$rrd_dir_perms = 0777;

$filter_dir_perms Controls the UNIX permissions applied to
directories of the type defined by the parameter.

$filter_dir_perms = 0777;

$work_dir_perms Controls the UNIX permissions applied to
directories of the type defined by the parameter.

$work_dir_perms = 0777;

$html_dir_perms Controls the UNIX permissions applied to
directories of the type defined by the parameter.

$html_dir_perms = 0777;

$html_file_perms Controls the UNIX permissions applied to files of
the type defined by the parameter.

$html_file_perms = 0777;

$graph_file_perms Controls the UNIX permissions applied to files of
the type defined by the parameter.

$graph_file_perms = 0777;

$rrd_file_perms Controls the UNIX permissions applied to files of
the type defined by the parameter.

$rrd_file_perms = 0777;

$filter_file_perms Controls the UNIX permissions applied to files of
the type defined by the parameter.

$filter_file_perms = 0777;

$tracker_file_perms Controls the UNIX permissions applied to files of
the type defined by the parameter.

$tracker_file_perms = 0777;

$actives_file_perms Controls the UNIX permissions applied to files of
the type defined by the parameter.

$actives_file_perms = 0777;

$saved_filters_perms Controls the UNIX permissions applied to files of
the type defined by the parameter.

$saved_filters_perms= 0777;

$bg_color Background color of the displayed web pages. $bg_color = "#F8F8F8";

$text_color Color of all text appearing on web pages. $text_color = "#000000";

$link_color Color of unvisited hyperlinks $link_color = "#006699";

$vlink_color Color of visited hyperlinks. $vlink_color = "#BF294D";

$dig This parameter points to the location of DNS
utility 'dig' (set this to nslookup if required.) The
parameter should be set to do inverse DNS
lookups, hence the –x in the example.

$dig = "/usr/bin/dig +time=1 -x ";

6. FlowViewer Operation and Usage

FlowViewer consists of two parts: FlowViewer.cgi, and FlowViewer_Main.cgi. The user
invokes FlowViewer by pointing his browser at the FlowViewer.cgi script. This approach
is different from earlier versions and provides the added benefit of updating input date
and time periods automatically. Once the user has clicked on the Generate Report
button, the FlowViewer_Main.cgi script is invoked which runs several flow-tools to
generate the report. The execution of the flow-tools is as follows:

flow-cat
flow-nfilter
flow-print (or)
flow-stat

The parameters for each of these commands are derived from the user’s input, including
filtering criteria and report selection. The filtering criteria are collected and a used to
create a flow-filter file which is provided to flow-nfilter. The script captures the output
from either flow-stat or flow-print and formats it for web-page output.

The FlowViewer input screen (FlowViewer.cgi) is shown in figure 6-1 below:

Figure 6-1 FlowViewer input screen

The user will complete input fields as necessary to define a filter for viewing flow_data.
Or, as of version 3.3 the user may select from a previously defined filter. Filters are
saved for future reference after a report has been produced by clicking on the “Save
Filter” link embedded in the FlowViewer_Save.png logo.

FlowViewer will accept up to 10 entries for each field, separated by commas. Fields may
be preceded by a dash or minus sign (-), which will cause the script to ignore such flows.
For example, providing the value -1776 to the Source AS field will eliminate from the
report any flows that originated in AS 1776.

The “Device Name” field allows the user to select from a collection of devices that he
may be collecting netflow from (‘@devices field in the FlowViewer_Configuration.pm
file.) As of version 3.3, the user is also able to differentiate netflow data from different
exporters based on the ‘Exporter ID’ field. This is used in the situation where the user is
collecting from multiple devices onto the same flow-capture port. The Exporter field is
not shown above, but appears if the user has configured the ‘@exporters’ field in the
FlowViewer_Configuration.pm file.

If you are not using any devices or exporters, you will have to set:

$no_devices_or_exporters = “Y”;

In this case, no device or exporter pulldown will appear.

The Source and Destination IP fields can accept either individual IP addresses, network
base and range (e.g., 192.169.100.0/24), or fully qualified domain names (e.g.,
www.abccompany.com.)

The Source Port and Destination Port entry fields will accept a range value as of version
3.1. The range value is created by separating the range end values with a colon (e.g.,
40100:40200.) Note that the underlying software, flow-tools, does not provide a range
capability. FlowViewer mimics the capability by individually listing each value within the
range. This could make for a very long filtering line to be provided to flow-tools. The
performance for very long ranges is not known.

The Source and Destination Interface values expect the SNMP index value for the
device’s interfaces. Note that these can change over time (e.g., when a new interface
card is added to the device.) For FlowTracker this becomes important. If an interface
index value should change for an active Tracking, use the ‘Revise’ option on the
FlowTracker main page to modify the filter. This will maintain the integrity of the
Tracking. As of version 3.3, FlowViewer offers the option to use Named Interfaces.
These must be configured in advance in either the NamedInterfaces_Devices, or
NamedInterfaces_Exporters files. Only one interface is available via the
NamedInterfaces pulldown, however this may be combined with numeric values in the
original interfaces text box to filter on multiple interfaces.

After completing the Filter Criteria, the user selects either a Statistics Report, or a
Printed Report. FlowViewer provides a web page of the same output that the flow-tools
report generates from the command line. The current reports that are available include:

Statistical Reports:

Summary
UDP/TCP Destination Port
UDP/TCP Source Port
UDP/TCP Port
Destination IP
SourceIP
Source/Destination IP
Source or Destination IP
IP Protocol
Input Interface
Output Interface
Input/Output Interface
Source AS
Destination AS
Source/Destination AS
IP ToS
Source Prefix
Destination Prefix
Source/Destination Prefix

Printed Reports:

Flow Times
AS Numbers
132 Columns
1 Line with Tags
AS Aggregation

Protocol Port Aggregation
Source Prefix Aggregation
Destination Prefix Aggregation
Prefix Aggregation
Full (Catalyst)

The “Include Flow If” parameter allows the user several options for controlling which
flows are included in the report. Because flows do not completely lie within a specified
period, the user has the option to define the conditions for including the flow. These
include:

Any Part in Specified Time Span
End Time in Specified Time Span
Start Time in Specified Time Span
Entirely in Specified Time Span

The “Sort Field” parameter controls the ordering of the report based on which column
has been selected for sorting. You can precede the sort field value with a dash (-) to
specify a reverse sorting order.

The user now has the option to view FlowViewer results in text form together with a pie-
chart representation of the data. The user would select a particular “Pie Charts” option.

The “Cutoff Lines” parameter controls how many lines will be printed. The first
‘cutoff_lines’ are printed. The ’Cutoff Octets’ parameter controls the point at which to end
the report based on the number of octets displayed in the output line. No additional lines
will be printed which contain an Octets value less than ‘cutoff octets’.

The “Sampling Multiplier” field can be set to a value greater than one whereby the data
in all reports and graphs will be multiplied by this number. This field is used to give an
approximation of real traffic flow levels for devices that export sampled netflow data.

The “Oct Conv.” option if selected will display octets in a shorthand notation (e.g., 10.3
MB instead of 10300000.)

The “Resolve Addresses” parameter informs the script whether or not to resolve IP
addresses into their full host names. Resolving addresses is a little slow the first time
through, but builds up a cache as the number of runs increases and soon becomes as
fast as not resolving addresses.

A typical FlowViewer report (in this case Input/Output Interface) is shown in figure 6-2
below:

Figure 6-2 FlowViewer report output

From the FlowViewer report output page the user can ‘Save Report’, or ‘Save Filter’ via
links in the FlowViewer logo at the top of the page. Saved reports listed on an Saved
Reports page as of version 3.3. Filters can now be saved for future retrieval by either of
FlowViewer, FlowGrapher, or FlowTracker.

FlowViewer Tips

• The 132 Column Printed Report option is very useful for understanding flows through

your network. The report provides source and destination information and interface
and port information in the same output. This length of this report is constrained
primarily by the ‘Cutoff Lines’ parameter, but is not slowed down by large values.

• Some reports will not work unless the proper netflow export field has been collected.

• The Input and Output interfaces are represented by the SNMP index assigned to

each interface by the device. In version 3.3 these will be named if NamedInterfaces
have been configured for the device or exporter selected.

7. FlowGrapher Operation and Usage

FlowGrapher consists of two parts: FlowGrapher.cgi, and FlowGrapher_Main.cgi. The
user invokes FlowGrapher by pointing his browser at the FlowGrapher.cgi script. This
approach is different from earlier versions and provides the added benefit of updating

input date and time periods automatically. Once the user has clicked on the Generate
Graph button, the FlowGrapher_Main.cgi script is invoked which runs several flow-tools
to generate the report. The execution of the flow-tools is as follows:

flow-cat
flow-nfilter
flow-print (132 columns)

The parameters for each of these commands are derived from the user’s input, primarily
the filtering criteria. The filtering criteria are collected and a used to create a flow-filter file
which is provided to flow-nfilter. The script captures the output from the flow-print 132-
columns option and parses it to build the graph.

The script builds an array of times and values depending on the “Sample Time”
parameter (in seconds.) This parameter defines the width of the ‘buckets’ into which
segments of flow-data is accumulated. When all of the 132-column output has been
parsed, the array is provided to Lincoln Stein’s GD::Graph software which produces the
graph.

The FlowGrapher input screen (FlowGrapher.cgi) is shown in figure 7-1 below:

Figure 7-1 FlowGrapher input screen

The user will complete input fields as necessary to define a filter for limiting the
flow_data. The filtering criteria are identical to those from FlowViewer described above.

The “Detail Lines” parameter controls how many lines of flow detail information will be
printed. FlowGrapher will select the largest ‘detail_lines’ number of flows to present
below the graph.

The “Graph Width” parameter is used to scale the resulting graph image. This is useful
sometimes for viewing detailed graphs.

The “Resolve Addresses” and “Include Flow If” parameters are the same as with
FlowViewer, and are described above.

The “Graph Types” option allows the user to graph either octets, flows, or packets.

The “Sampling Multiplier” field allows the user to expand the graphed output in
compliance with the sampling rate for sampled netflow data in order to simulate actual
traffic flows.

A typical FlowGrapher report is shown in figure 7-2 below:

Figure 7-2 FlowGrapher output

As of version 3.1, FlowGrapher now display statistical information about the data flows
for the time period graphed. The information includes the maximum, minimum, average,
and 95th percentile values of those data points plotted. As of version 3.3, each of the
data lines are sortable. To sort, click on the column header that you wish to sort by.

FlowGrapher Tips

• FlowGrapher completion speed is effected by the ‘Detail Lines’ input variable.

FlowGrapher will select the largest ‘Detail Lines’ number of flows to display. For
example the largest 100 flows. Sorting the largest flows can slow down for very large
values of ‘Detail Lines.’

• Varying the ‘Sample Time’ parameter (which effects the size of the bucket into which

flows are parsed) does not have a significant impact on report completion speed.

8. FlowTracker Operation and Usage

FlowTracker consists of three parts: FlowTracker.cgi, FlowTracker_Main.cgi, and
FlowTracker_Group.cgi. The user invokes FlowTracker by pointing his browser at the
FlowTracker.cgi script. The FlowTracker input screen offers the same basic filtering
criteria, with the exception that there in no longer the capability to enter start and end
times. This is because Trackings established by FlowTracker are updated continuously
and the time period is established by the FlowTracker_Collector program. This script
runs every five minutes and extracts flow data amounts, based on the established
Tracking filter, for a 5-minute period approximately 30 minutes in the past.

The FlowTracker input screen (figure 8-1 below) permits the user to define a filter for a
long term Tracking or to create a Group from pre-existing trackings. The user is
prompted to provide a Tracking name and to supply any comments that might help
explain the Tracking.

Figure 8-1 FlowTracker Input Screen

A Tracking is filter-driven and basically results in four MRTG-like graphs which track flow
amounts over four time periods; daily, weekly, monthly, and yearly. A sample Tracking is
shown in figure 8-2 below. A tracking group is established from existing trackings and is
invoked when the user selects ‘Group’ for the Tracking Type. A group does not have any
input filtering criteria and any supplied will be ignored. A group will also have the four
MRTG-like graphs created from the stacking of values from each of the group’s
components. The Group Tracking input screen is discussed in more detail below.

Figure 8-2 FlowTracker Tracking

It is useful to experiment with different filters in FlowViewer or FlowGrapher before
settling on the right filter for creating a Tracking. When you are satisfied, simply click on
the FlowTracker link embedded in the FlowViewer or FlowGrapher logo and the filter
criteria you finally ended up with will pre-fill the FlowTracker input screen. Although you
can make any number of modifications to a tracking once it is created, a maximum of
three of these modifications can be applied to the graph itself, creating a vertical line to
mark the change. FlowTracker will use the last three notations created.

The FlowTracker screen allows a user to create new Trackings, and to manage existing
ones. For existing Trackings, the user has the ability to “Revise” or “Remove” them. The
“Revise” feature permits the user to adjust an existing Tracking to use a modified filter,
or to change the comment associated with a Tracking. The Tracking will continue with
these modifications, thus preserving historical data. The Tracking sample below has
such a modification.

The Source and Destination Interface values expect the SNMP index value for the
device’s interfaces. Note that these can change over time (e.g., when a new interface
card is added to the device.) For FlowTracker this becomes important. If an interface
index value should change for an active Tracking, use the ‘Revise’ option on the
FlowTracker main page to modify the filter. This will maintain the integrity of the
Tracking.

The user, as of version 3.3, may establish an Alert Threshold and be alerted via email
whenever this threshold has been exceeded; or for negative values, whenever the
tracking does not meet the threshold. Fields have been included for this purpose. The
user may elect to be notified ‘with every occurrence’, ‘once a day’, or to stop
notifications.

When the user clicks on the “Establish Tracking” button, the FlowTracker_Main.cgi script
is invoked. When the Tracking Type is set to ‘Individual’, this script creates a filter file to
preserve the filter criteria, and an RRDtool database to maintain the 5-minute flow data
readings for each Tracking, based on the filter data. The script will also create an HTML
page to hold the filter criteria and the four MRTG-like graphs. It will also establish a
directory to hold all of the files (i.e., index.html, FlowTracker_Links.png, and the four
graphs.)

Existing Trackings and Groups have been listed on the FlowTracker input page for
management. Figure 8-3 shows a portion of the page.

Figure 8-3 FlowTracker listing of existing Trackings for management

A user may remove a Tracking. In this case, the script moves the tracking files that were
created (see below) to the working directory for deletion later. This allows the user a
chance to recover if he has done this by mistake.

When the user wishes to create a Group from previously defined existing (Individual)
trackings, he selects ‘Group’ from the Tracking Type pulldown. No tracking filter criteria
are required and in fact are ignored if provided since a group has no filter criteria or
RRDtool databases associated with it directly. The FlowTracker_Main.cgi script will

invoke the FlowTracker_Group.cgi script which will handle the user’s creation of a group.
The Group tracking input screen is shown in figure 8-4 below.

When defining a group, the user identifies which existing tracking he would like to add to
the group next. He identifies whether it should be placed above or below the x-axis, and
which color it should be. There are four automatic colors (red, green, blue, violet) which
if selected will inform the script to automatically use the next color in a range of similar
colors. Each time a new component (i.e., a selected existing tracking) is added to the
graph, a sample RRDtool graph is created. Note that the RRDs.pm component of the
RRDtool distribution is used to speed things up. If you are having problems creating
these sample graphs, make sure your RRDs.pm is installed and compatible with your
RRDtool version (it usually is.)

The FlowTracker Group input screen allows the user to move components around and
change their colors until a satisfactory group is achieved. Groups can be revised just like
individual trackings can and the group graph can be notated with a vertical bar for a
particular revision if desired.

Once a group is established it will appear with the next execution of
FlowTracker_Grapher (defaults to every 5 minutes.) The group will appear in the Group
area of the Active Trackings webpage and also in a Group area of the FlowTracker Input
screen.

Since version 3.1, users have the ability to archive trackings, and restore them to active
collection and graphing later if they wish. This can be useful for removing inactive
trackings from both the collecting and graphing processes.

Figure 8-4 FlowTracker Group Input screen

A typical FlowTracker Group web page is shown in figure 8.5 below. Group trackings
have the same ability for revision as individual trackings, with vertical bars placed on the
group graphs when the user requests that revisions to the group be notated. Each of the
individual trackings that make up the group are listed beneath the graph and each is an
embedded link back to the individual tracking web page.

Figure 8-5 Typical FlowTracking Group web page

Running FlowTracker_Collector and FlowTracker_Grapher

After un-tarring the FlowViewer package and modifying the
FlowViewer_Configuration.pm file for their environment, the user should initiate the
FlowTracker_Collector and FlowTracker_Grapher programs from the command line.
Each of these programs is intended to run continuously so they should be put into the
‘background’ (e.g. “ somehost >FlowTracker_Collector&.”) The user does not need to
start these programs on any particular minute, as they will self-adjust to collect on even
five minute intervals, and graph when first started and every graphing_period seconds
thereafter.

Note that these processes will have to interact with files that have been established by
the web server, so that the permissions on the web-server created files, (i.e., in
particular the RRD files) must allow the user who starts the FlowTracker_Collector and
FlowTracker_Grapher processes to be able to write to these files.

FlowTracker_Collector controls itself to run every five minutes. Once started, the script
first looks to see if has been started less than five minutes from its previous execution. If
so, it will go to sleep until a full five minutes has elapsed since its last execution.
FlowTracker_Collector will then parse through each of the established Trackings
(identified by the presence of a Tracking filter file in the FlowTracker_Filters
subdirectory) reading the filter file and invoking:

flow-cat
flow-nfilter
flow-print (132 columns)

FlowTracker_Collector will reuse previously created flow-tools concatenation files to
speed up the processing. This is accomplished on a device-by-device basis, that is,
concatenation files will be generated for each device one time only.

The output file is parsed and flow data for the 5-minute period is accumulated. Parsing
individual flows in this manner is necessary to accumulate the correct portion of flows
that cross either or both ends of the 5-minute time period. The script then invokes
rrdtool_update with this latest data point. The RRDtool file for each active tracking is
stored in the FlowTracker_RRDtool subdirectory established by the user.

As of version 3.3, FlowTracker_Collector will compare the rate it collected for a tracking
against eth Alert Threshold if this has been established. If a threshold has be set up and
the value determined for the collection period exceeds it (or has not met it for negative
threshold values), an email is sent to the email address established along with the Alert
Threshold.

After FlowTracker_Collector has completed this process for each active Tracking, it
determines how much time it took to do this and subtracts that from five minutes and
puts itself to sleep for what remains of the period. If the user has elected to log
FlowTracker_Collector activity, the script will output information to the
FlowTracker_Collector.log file.

After starting up FlowTracker_Collector, the user should invoke FlowTracker_Grapher
from the command line, placing it also in the ‘background’ (e.g., ‘somehost
>FlowTracker_Grapher&’.)

FlowTracker_Grapher simply invokes rrdtool_graph to create the four MRTG-like graphs
for each active tracking and goes back to sleep for a parameter adjustable period (e.g.,
$graphing_period = 300;.) FlowTracker_Grapher updates only the MRTG-like graphs
that have changed if the $lazy-mode variable is set.

Each time FlowTracker_Grapher runs it re-builds each individual tracking HTML file and
the overall active trackings HTML page ($actives_webpage.) This page is provided as a
single point of entry for other users to be able to link to each active Tracking. Note: the
user may wish to create their own “overall” web page.

From the Tracking HTML page, the user can click on the FlowViewer and FlowGrapher
portion of the FlowTracker image at the top. These will invoke either FlowViewer.cgi, or

FlowGrapher.cgi with filter criteria pre-filled with the Tracking filter criteria. This permits
additional analysis.

As of version 3.3, user’s can now generate a textual listing of the data making up each
graph in the FlowTracking. Embedded in each graph is a [List Values] option. the
resulting web page lists the values and also does an approximation (extrapolation:
bits/seconds * seconds) of Bytes transferred during the period. An example from a
“Yearly” graph showing bytes per day is shown in figure 8-7 below.

Figure 8-7 List Values option from a “Yearly” FlowTracker graph

9. Cleaning Up

The following files are provided in the distribution for cleaning up caches and directories
of Reports and Graphs that have lost their usefulness:

� FlowViewer_CleanASCache

This script is used to remove Autonomous System resolutions that may have changed
externally, but remain in the FlowViewer AS Cache file. It is invoked from the command
line.

� FlowViewer_CleanHostCache

This script is used to remove host name resolutions that may have changed in DNS, but
remain in the FlowViewer Names Cache file. It is invoked from the command line.

� FlowViewer_CleanFiles

This script is used to clean up older files that remain in the Reports, Graphs, and
Trackings directories. When a user saves a report or graph in version 3.3, it is saved to a
separate directory, so the Reports and graphs directories can now be cleaned without
fear of removing saved reports or graphs. This file can be invoked daily from crontab. An
example is shown below:

Setting up crontab file for cleaning FlowViewer files:

min hr dom moy dow command

5 0 * * * /htp/cgi-bin/FlowViewer_3.3/FlowViewer_CleanFiles

> /htp/cgi-bin/FlowViewer_3.3/cleanup.log

2 >> /htp/cgi-bin/FlowViewer_3.3/cleanup.log

